
On the Decoding Complexity of
Cyclic Codes Up to the BCH Bound

Davide Schipani
Mathematics Institute
University of Zürich

CH-8057 Zürich
davide.schipani@math.uzh.ch

Michele Elia
Dipartimento di Elettronica

Politecnico di Torino
IT-10129, Torino

elia@polito.it

Joachim Rosenthal
Mathematics Institute
University of Zürich

CH-8057 Zürich
http://www.math.uzh.ch/aa

Abstract—The standard algebraic decoding algorithm of
cyclic codes [n, k, d] up to the BCH bound t is very efficient
and practical for relatively small n while it becomes unprac-
tical for large n as its computational complexity is O(nt). Aim
of this paper is to show how to make this algebraic decoding
computationally more efficient: in the case of binary codes,
for example, the complexity of the syndrome computation
drops from O(nt) to O(t

√
n), and that of the error location

from O(nt) to at most max{O(t
√
n), O(t2 log(t) log(n))}.

Keywords: Cyclic codes, Syndrome computation, Decod-
ing complexity, Reed Solomon codes, Root search

Mathematics Subject Classification (2010): 94B15,
94B35

I. INTRODUCTION

The algebraic decoding of cyclic codes up to the
BCH bound, as obtained early in the sixties with the
contribution of many people, was considered very effi-
cient for the needs of that time ([1], [2], [15], [16], [18],
[19]). However, today we can and need to manage error
correcting codes of sizes that require more efficient algo-
rithms, possibly at the limit of their theoretical minimum
complexity. We are proposing here an algorithm that
goes in this direction.
Let us summarize, for easy reference, the algebraic de-
coding of cyclic codes: let C be an [n, k, d] cyclic code
over a finite field Fq , q = ps for a prime p, with generator
polynomial of minimal degree r = n− k

g(x) = xr + g1x
r−1 + . . .+ gr−1x+ gr ,

g(x) dividing xn − 1, and let α be a primitive n-th root
of unity lying in a finite field Fpm , where the extension
degree is the minimum integer m such that n is a divisor
of pm − 1. Assuming that C has BCH bound t, then g(x)

has 2t roots with consecutive power exponents, so that
the whole set of roots is

R = {α`+1, α`+2, . . . , α`+2t, αs2t+1 , . . . , αsr} ,

where it is not restrictive to take ` = 0 as it is usually
done.
Let R(x) = g(x)I(x) + e(x) be a received code word
such that the error pattern e(x) has no more than t

errors. The Gorenstein-Peterson-Zierler decoding proce-
dure ([15], [18]), which is a standard decoding procedure
for every cyclic code up to the BCH bound, is made up
of four steps:

• Computation of 2t syndromes: Sj = R(αj), j =

1, . . . , 2t.
• Computation of the error-locator polynomial σ(z) =

σtz
t + σt−1z

t−1 + · · · + σ1z + 1 (we are assuming
the case that exactly t errors occurred; if there are
te < t errors, this step would output a polynomial
of degree te).

• Computation of the roots of σ(z) in the form α−jh ,
h = 1, . . . , t, yielding the error positions jh.

• Computation of the error magnitudes.

Efficient implementations of this decoding algorithm
combine the computation of 2t syndromes using
Horner’s rule, the Berlekamp-Massey algorithm to ob-
tain the error-locator polynomial, the Chien search to
locate the errors, and the evaluation of Forney’s poly-
nomial to estimate the error magnitudes.
The computation of the 2t syndromes using Horner’s
rule requires 2tn multiplications in Fqm , which may be
prohibitive when n is large. The Berlekamp-Massey al-
gorithm has multiplicative complexity O(t2) ([2], [11]), is
very efficient and will not be discussed further later on.
The Chien search requires again O(tn) multiplications
in Fqm and Forney’s algorithm O(t2) ([11]). Notice that
this fourth step is not required if we deal with binary
codes and that both the first and the fourth steps consist
primarily in polynomial evaluations, so they can benefit
from any efficient polynomial evaluation algorithm, as
we will show.
The standard decoding procedure is satisfactory when



the code length n is not too large (say < 103) and
efficient implementations are set up taking advantage
of the particular structure of the code. The situation
changes dramatically when n is of the order of 106 or
larger. In this case a complexity O(tn), required by the
syndrome evaluations and by the Chien search, is not
acceptable anymore.
This paper describes some methods to make these steps
more efficient and practical even for large n. We will
follow the usual approach of focusing as above in com-
puting the number of multiplications, as they are more
expensive than sums (see also [5]).
The paper is structured as follows: Section II concerns
the computation of syndromes. Section III deals with the
computation of the roots of the error-locator polynomial
as well as the corresponding error positions; the error
locator polynomial is supposed to be given (being com-
puted by Berlekamp-Massey algorithm). Finally, Section
IV gives a numerical example illustrating the whole
procedure.

II. SYNDROME EVALUATION

Let β be any element of R, the standard Horner’s
rule ([12],[13]) allows us to compute R(β) in at most n
products, thus for the computation of 2t syndromes we
have the estimate O(tn). However, in [21], [6] we showed
that polynomials over a finite field of characteristic p can
be evaluated more efficiently by exploiting the Frobenius
automorphism, i.e. the mapping σ(β) = βp, with a
significant computational cost reduction.
Briefly, to evaluate a polynomial r(x) of degree n over
Fps , in β, an element of Fpm , we write r(x) as a linear
combination of s polynomials ri(x) over Fp

r(x) = r0(x) + γr1(x) + · · ·+ γs−1rs−1(x) ,

where {1, γ, . . . , γs−1} is basis for Fps . Thus r(β) is
obtained as a liner combination of s field elements ri(β).
To evaluate a polynomial R(x) over Fp in β, one can
profit by writing

R(x) = R1,0(xp) + xR1,1(xp) + · · ·+ xp−1R1,p−1(xp) ,

where R1,0(xp) collects the powers of x with exponent
a multiple of p and in general xiR1,i(x

p) collects the
powers of the form xap+i, with a ∈ N and 0 ≤ i ≤ p− 1.
Thus R(β) can be computed by evaluating βp, then
computing every R1,i(β

p) and finally computing the lin-
ear combination. This procedure requires, for example,
nearly n/2 multiplications in the binary case, but the big
advantage is that it can be iterated. After L steps, we
need to evaluate pL polynomials RL,i(x) of degree at
most b n

pL c. By a convenient number L of iterations, and
with a smart arrangement of the multiplications ([6]),

one can achieve an overall complexity of approximately
2s
√
n(p− 1). Outstanding is in particular the case of

binary codes, where the complexity is 2
√
n.

It should be remarked that in hardware implementa-
tions, the proposed algorithm allows a strong paral-
lelism, while Horner’s rule is inherently serial. In fact,
if L is the number of iterations, the evaluation of the pL

polynomials RL,i(x) can be done in parallel. Moreover
an additional gain may be given by the pre-computation
of the powers of β, especially when the number of
syndromes to be computed is big. Furthermore, like in
Horner’s rule, multiplication by β or its powers can be
performed using Linear Feedback Shift Registers ([10],
[15], [17]) with a further speed up at a very small cost,
while the p-power operations would benefit from the use
of a normal basis ([12], [14]).

Lastly, it should be also remarked that, in particular
situations, a better cost reduction can be obtained by
means of a different use of the Frobenius automorphism
and a careful choice of the number of iterations. As
an example, in [21] we described a method of comput-
ing the syndromes for the famous Reed-Solomon code
[255, 223, 33] over F28 used by NASA ([24]), that employs
6735 multiplications to evaluate 32 syndromes, versus
8159 multiplications that are necessary using Horner’s
rule. The direct application of the method outlined above
would not be convenient in this situation because of the
particular parameters involved.

III. ROOTS OF THE ERROR-LOCATOR POLYNOMIAL

Once the error locator polynomial σ(z) is computed
from the syndromes using the Berlekamp-Massey algo-
rithm, its roots, represented in the form α−`i , correspond
to the error positions `i, i = 1, . . . , t, which are generally
found by testing σ(α−i) for all n possible powers α−i

with an algorithm usually referred to as the Chien
search. In this approach, if σ(α−j) = 0 an error in
position j is recognized, otherwise the position is correct.
However, this simple mechanism can be unacceptably
slow when n is large since its complexity is O(tn): aim
of this Section is to describe a less costly procedure.
The Cantor-Zassenhaus probabilistic factorization algo-
rithm ([3]) is very efficient in factoring a polynomial and
consequently in computing the roots of a polynomial ([9,
Chapter 14.5, Corollary 14.16]). Since σ(z) is the product
of t linear factors z + ρi over Fqm (i.e. ρi is a q-ary
polynomial in α of degree m−1), this factoring algorithm
can be directly applied to separate these t factors. The
error positions `i are then obtained by computing the
discrete logarithm of (ρi)

−1 = α`i to base α. This task



can be performed by Shank’s algorithm ([22]), which we
revisit below. The overall expected complexity of finding
the error positions with this algorithm is O(mt2 log t) ([9,
Chapter 14]), plus O(t

√
n), where the second addend

comes from Shank’s algorithm. It is evident how this
complexity is better than O(n) in most cases, in particu-
lar when t is small in comparison to n. Moreover, con-
sidering the recently improved version in [7], sketched
briefly in the remark below, it is possible to obtain better
computational estimates.

a) Cantor-Zassenhaus algorithm: The algorithm of
Cantor-Zassenhaus ([3]) is described here for easy ref-
erence (see also the improvement in [7]). We describe
only the case of characteristic 2, which is by far the
most common in practice; the interested reader can find
the general situation in [3], [7]. Assume that p(z) is a
polynomial over F2m that is a product of t polynomials
of degree 1 over the same field F2m , m even (when m is
odd it is enough to consider a quadratic extension and
proceed as in the case of even m). Suppose that α is a
known primitive element in F2m , and set `m = 2m−1

3 ,
then ρ = α`m is a primitive cubic root in F2m , so that
ρ is a root of z2 + z + 1. The algorithm consists of the
following steps:

1) Generate a random polynomial b(z) of degree t−1

over F2m

2) Compute a(z) = b(z)`m mod p(z);
3) IF a(z) 6= 0, 1, ρ, ρ2, THEN at least a polynomial

among

gcd{p(z), a(z)}, gcd{p(z), a(z) + 1},
gcd{p(z), a(z) + ρ}, gcd{p(z), a(z) + ρ2}

will be a non trivial factor of p(z), ELSE repeat from
point 1.

4) Iterate until all linear factors of p(z) are found.
b) Remark 1: As shown in [7], the polynomial b(z)

can be chosen of the form z+β, using b(z) = z as initial
choice. Let θ be a generator of the cyclic subgroup of
F∗2m of order `m. If z`m = ρi mod σ(z), i ∈ {0, 1, 2}, then
each root ζh of σ(z) is of the form αiθj . If this is the case,
which does not allow us to find a factor, we repeat the
test with b(z) = z+β for some β and we will succeed as
soon as the elements ζh + β are not all of the type αiθj

for the same i ∈ {0, 1, 2}. This can be shown to happen
probabilistically very soon, expecially when the degree
of σ(z) is high.

c) Shank’s algorithm: Shank’s algorithm can be ap-
plied to compute the discrete logarithm in a group of
order n generated by the primitive root α. The exponent
` in the equality

α` = b0 + b1α+ · · ·+ bs−1α
s−1 .

is written in the form ` = `0 + `1d
√
ne. A table T is

constructed with d
√
ne entries α`1d

√
ne which are sorted

in some well defined order, then a cycle of length d
√
ne

is started computing

Aj = (b0+b1α+ · · ·+bs−1αs−1)α−j j = 0, . . . , d
√
ne−1 ,

and looking for Aj in the Table; when a match is found
with the κ-th entry, we set `0 = j and `1 = κ, and the
discrete logarithm ` is obtained as j + κd

√
ne.

This algorithm can be performed with complexity O(
√
n)

both in time and space (memory). In our scenario, since
we need to compute t roots, the complexity is O(t

√
n).

d) Remark 2: The Cantor-Zassenhaus algorithm
finds the roots Xj = α`j of the reciprocal of the er-
ror locator polynomial, then the baby-step giant-step
algorithm of Shank’s finds the error positions `js. As
said in the introduction, this is the end of the decoding
process for binary codes. For non-binary codes, Forney’s
polynomial Γ(x) = σ(x)(S(x) + 1) mod x2t+1, where
S(x) =

∑2t
i=1 Six

i ([23]), yields the error values

Yj = −Xj

Γ(X−1j )

σ′(X−1j )
.

Again we remark that this last step can benefit from an
efficient polynomial evaluation algorithm, such as the
one discussed in Section 2.

e) Remark 3: We observe that the above procedure
can be used to decode beyond the BCH bound, up to the
minimum distance, whenever the error locator polyno-
mial can be computed from a full set of syndromes ([4],
[8], [20], [23]).

IV. A NUMERICAL EXAMPLE

In the previous sections we presented methods to
compute syndromes and error locations in the GPZ
decoding scheme of cyclic codes up to their BCH bound,
which are asymptotically better than the classical algo-
rithms. The following example illustrates the complete
new procedure.
Consider a binary BCH code [63, 45, 7] with generator
polynomial

g(x) = x18 + x17 + x14 + x13 + x9 + x7 + x5 + x3 + 1

whose roots are

α, α2, α4, α8, α16, α32, α3, α6, α12,

α24, α48, α33, α5, α10, α20, α40, α17, α34,

thus the BCH bound is 3. Let c(x) = g(x)I(x) be a
transmitted code word, and the received word be

r(x) = x57+x56+x53+x52+x50+x48+x46+x44+x42+

x39 + x31 + x18 + x17 + x14 + x13 + x7 + x5 + x3 + 1



where 3 errors occurred. The 6 syndromes are

S1 = α5 + α2 + α

S2 = S2
1

S3 = α5 + α4 + α3 + α2 + α

S4 = S4
1

S5 = α5 + α2 + 1

S6 = S2
3

.

For example, S1 has been computed considering r(x) as

[r3,0+zr3,1+y(r3,2+zr3,3)]+x[r3,4+zr3,5+y(r3,6+zr3,7)],

with y = x2, z = x4, w = x8 and

r3,0 = w7 + w6 + 1

r3,1 = w6 + w5

r3,2 = w6 + w5 + w2

r3,3 = w5 + w

r3,4 = w7 + w2

r3,5 = w6 + w + 1

r3,6 = 1

r3,7 = w4 + w3 + 1

with only 16 products, namely 3 to compute α2, α4 and
α8, 6 for the powers of w up to w7 and 7 multiplications
by x, y and z.

The coefficients of the error locator polynomial turn
out to be 

σ1 = α5 + α2 + α

σ2 = α3 + α4 + α

σ3 = α4 + α5 + α2

.

The roots of σ∗(z) = z3σ(z−1) =
∏3

i=1(z − α`i) are
computed as follows using the Cantor-Zassenhaus algo-
rithm.

Let ρ = α21 be a cube root of the unity, consider a
random polynomial, for instance z + ρ, of degree less
than 3 and compute a(z) = (z + ρ)21 modulo σ∗(z) (the
exponent of z + ρ is 2m−1

3 = 63
3 = 21)

(α5 +α4 +α2 +α+1)z2 +(α3 +α+1)z+α5 +α4 +x3 +1 .

In this case a(z) has no root in common with σ∗(z), while

gcd(a(z) + 1, σ∗(z)) = z + (α4 + α3 + 1) (`1 = 31),

gcd(a(z) + ρ, σ∗(z)) = z + (α5 + α4 + α2 + 1) (`2 = 9),

gcd(a(z) + ρ2, σ∗(z)) = z + (α3 + α) (`3 = 50).

The error positions have been obtained using Shank’s
algorithm with a table of 8 entries, and a loop of length 8

for each root, for a total of 24 searches versus 63 searches
of Chien’s search.

ACKNOWLEDGMENT

The Research was supported in part by the Swiss
National Science Foundation under grant No. 132256

REFERENCES

[1] E. Berlekamp, Algebtraic Coding Theory, McGraw-Hill, New York,
1968.

[2] R.E. Blahut, Algebraic Codes for Data Transmission, Cambridge
University Press, Cambridge, 2003.

[3] D.G. Cantor, H. Zassenhaus, A new Algorithm for Factoring
Polynomials over Finite Fields, Math. of Coputation, Vol. 36, N.
154, April 1981, pp.587-592.

[4] M. Elia, Algebraic Decoding of the (23, 12, 7) Golay Code IEEE
Trans. on Information Theory, vol. IT-33, No.1, January 1981, p.150-
151.

[5] M. Elia, M. Leone, On the Inherent Space Complexity of Fast
Parallel Multipliers for GF (2m), IEEE Trans. on Computer, vol.
51, N.3, March 2002, p.346-351.

[6] M. Elia, J. Rosenthal, D. Schipani, Polynomial evaluation over fi-
nite fields: new algorithms and complexity bounds, www.arxiv.org,
2011.

[7] M. Elia, D. Schipani, Improvements on Cantor-Zassenhaus Fac-
torization Algorithm, www.arxiv.org, 2010,

[8] G.-L. Feng, K.K. Tzeng, Decoding cyclic and BCH codes up to ac-
tual minimum distance using nonrecurrent syndrome dependence
relations, IEEE Trans. on Inform. Th., IT-37, No.6, 1991, pp.1716-
1723.

[9] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cam-
bridge Univ. Press, 1999.

[10] S.W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna
Hills, 1982.

[11] J. Hong, M. Vetterli, Simple Algorithms for BCH Decoding, IEEE
Trans. on Communications, Vol. 43, No. 8, August 1995, pp.2324-
2333.

[12] D. Jungnickel, Finite Fields, Structure and Arithmetics, Wis-
senshaftsverlag, Mannheim, 1993.

[13] D.E. Knuth, The Art of Computer Programming, Seminumerical al-
gorithms, vol. II, Addison-Wesley, Reading Massachussetts, 1981.

[14] R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley, Reading,
Mass., 1986.

[15] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting
Codes, North Holland, New York, 1977.

[16] J.L. Massey, Shift-Register Synthesis and BCH decoding, IEEE
Trans. on Inform. Th., IT-15, 1969, pp.122-127.

[17] R.J. McEliece, Finite Fields for Computer Scientists and Engineers,
Kluwer Academic Press, Boston, 1987.

[18] W.W. Peterson, E.J. Weldon, Error-Correcting Codes, MIT, New
York, 1981.

[19] V.S. Pless, W.C. Huffman, Handbook of Coding Theory, vol. I and II,
Noth-Holland, Amsterdam, 1998.

[20] Reed, I.S., Truong, T.K., Chen, X., Yin, The algebraic decoding of
the (41, 21, 9) quadratic residue code IEEE Trans. on Inform. Th.,
IT-38, No.3, 1992, pp.974-986.

[21] D. Schipani, M. Elia, J. Rosenthal, Efficient evaluation of polyno-
mials over finite fields, Proceedings of 2011 Australian Communica-
tions Theory Workshop, 2011, pp.154-157.

[22] D. Shanks, Class number, a theory of factorization and genera,
Proc. Symp. Pure Math., AMS, Providence R.I., No.20, 1971, pp.415-
440.

[23] S.B. Wicker, Error control systems for Digital Communication and
Storage, Prentice-Hall, Englewood Cliffs, N.J., 1995.

[24] S.B. Wicker, V.K. Bhargava, eds. Reed-Solomon codes and their
applications, IEEE Press, Piscataway, N.J., 1994.


